Contractile properties of the elasmobranch rectal gland.

Journal of Experimental Biology 204(Pt 1):59 (2001) PMID 11104711

The importance of the rectal gland in elasmobranch osmoregulation is well established. The rate of secretion by the gland is under the control of a variety of secretagogues and inhibitors. Early morphological work suggested that a band of smooth muscle cells surrounds the periphery of the shark rectal gland between the secretory tubules and the connective tissue capsule. To confirm the presence of the muscle ring, we examined histological sections from two species of shark, Squalus acanthias and Carcharodon carcharius, and from the stingray Dasyatis sabina and stained sections from S. acanthias with the actin-specific ligand phalloidin. In all three species, a distinct band of what appeared to be smooth muscle cells was evident, and the putative muscle ring in S. acanthias stained specifically with phalloidin. Moreover, isolated rings of rectal gland tissue from S. acanthias constricted when acetylcholine or endothelin was applied and responded to nitric oxide with an initial dilation, followed by a more substantial constriction. Subsequent addition of porcine C-type natriuretic peptide dilated the rings, but two prostanoids (carbaprostacyclin and prostaglandin E(1)) did not change ring tension significantly. The rings did not respond to the endothelin-B-specific agonist sarafotoxoin S6c, suggesting that the response to endothelin was mediated via endothelin-A-type receptors. Our data confirm the presence of a smooth muscle ring in the periphery of the elasmobranch rectal gland and demonstrate that the gland responds to a suite of smooth muscle agonists, suggesting that changes in the dimensions of the whole rectal gland may play a role in its secretory function.