Advanced search×

Order, disorder, death: lessons from a superorganism.

Advances in Cancer Research 95:31 (2006) PMID 16860655 PMCID PMC2386248

Animal models contribute to the understanding of molecular mechanism of cancer, revealing complex roles of altered cellular-signaling networks and deficient surveillance systems. Analogous pathologies are documented in an unconventional model organism that receives attention in research on systems theory, evolution, and aging. The honeybee (Apis mellifera) colony is an advanced integrative unit, a "superorganism" in which order is controlled via complex signaling cascades and surveillance schemes. A facultatively sterile caste, the workers, regulates patterns of growth, differentiation, homeostasis, and death. Workers differentiate into temporal phenotypes in response to dynamic social cues; chemosensory signals that can translate into dramatic physiological responses, including programmed cell death. Temporal worker forms function together, and effectively identify and terminate abnormal colony members ranging from embryos to adults. As long as this regulatory system is operational at a colony level, the unit survives and propagates. However, if the worker phenotypes that collectively govern order become too few or change into malignant forms that bypass control mechanisms to replicate aberrantly; order is replaced by disorder that ultimately leads to the destruction of the society. In this chapter we describe fundamental properties of honeybee social organization, and explore conditions that lead to states of disorder. Our hope is that this chapter will be an inspirational source for ongoing and future work in the field of cancer research.

DOI: 10.1016/S0065-230X(06)95002-7