Production and physicochemical properties of functional-butterfat through enzymatic interesterification in a continuous reactor.

Journal of Agricultural and Food Chemistry 57(3):888 (2009) PMID 19138078

Modified-butterfat (MBF) was synthesized with four blends (8:6:6, 6:6:8, 6:6:9, and 4:6:10, by weight) of anhydrous butterfat (ABF), palm stearin (PS) and flaxseed oil (FSO) through enzymatic interesterification in a continuous packed-bed reactor. Flow rate effect of 3, 5, 8 and 10 mL/min on enzymatic interesterification was investigated. By increasing the enzyme contact time with substrates (decreased flow rates), not only did melting and crystallization points shift to lower temperature but also the equivalent carbon number, ECN 36-38 from FSO decreased. Further all reactions were performed at flow rate of 5 mL/min (contact time 140 min) in a continuous reactor packed with 150 g of Lipozyme RM IM. After short path distillation, alpha-linolenic acid composition (%) of 8:6:6, 6:6:8, 6:6:9, and 4:6:10 MBFs were 16, 21, 23 and 25%, respectively. The contents of ECN 36-38, and ECN 48-50 decreased in the blends and MBFs for each substrate ratio. ECN 42-46 in the newly produced TAG increased. Melting points of MBFs were 38 degrees C (8:6:6), 35.5 degrees C (6:6:8), 34 degrees C (6:6:9), and 32 degrees C (4:6:10). MBFs interesterified with FSO contained phytosterols (17-36 mg/100 g) and tocopherols (116-173 microg/g). The products of 8:6:6, 6:6:8, 6:6:9 and 4:6:10 MBFs were softer (69, 88, 80, and 92%, respectively) than pure butterfat at refrigeration temperature. The polymorphic form changed from beta form (blends) to desirable crystalline structure of beta' form (MBFs). Crystal morphology of MBFs also changed and was composed of small spherulites of varying density.

DOI: 10.1021/jf802678a