Advanced search×

Kinetics of iron oxidation upon polyphenol binding.

Dalton Transactions (Print Edition) 39(41):9982 (2010) PMID 20871896

Polyphenol prevention of iron-mediated DNA damage occurs primarily through iron binding. Once bound, iron in the Fe(2+)-polyphenol complex autooxidizes to Fe(3+) in the presence of O(2). To determine the correlation between the rate of Fe(2+)-polyphenol autooxidation and polyphenol antioxidant ability, kinetic studies at pH = 6.0 in the presence of oxygen were performed using UV-vis spectrophotometry. Initial rates of iron-polyphenol complex oxidation for epigallocatechin gallate (EGCG), methyl-3,4,5-trihydroxybenzoate (MEGA), gallic acid (GA), epicatechin (EC), and methyl-3,4-dihydroxybenzoate (MEPCA) were in the range of 0.14-6.7 min(-1). Polyphenols with gallol groups have faster rates of iron oxidation than their catechol analogs, suggesting that stronger iron binding results in faster iron oxidation. Concentrations of polyphenol, Fe(2+), and O(2) were varied to investigate the dependence of the Fe(2+)-polyphenol autooxidation on these reactants for MEGA and MEPCA. For these analogous gallate and catecholate complexes of Fe(2+), iron oxidation reactions were first order in Fe(2+), polyphenol, and O(2), but gallate complexes show saturation behavior at much lower Fe(2+) concentrations. Thus, gallol-containing polyphenols promote iron oxidation at a significantly faster rate than analogous catechol-containing compounds, and iron oxidation rate also correlates strongly with polyphenol inhibition of DNA damage for polyphenol compounds with a single iron-binding moiety.

DOI: 10.1039/c0dt00752h