Optimization of an hydroxyapatite adhesion assay for Streptococcus sanguis.

Infection and Immunity 44(2):287 (1984) PMID 6325348 PMCID PMC263515

Previous studies have compared the adhesion of [3H]thymidine-labeled Streptococcus sanguis to saliva-coated hydroxyapatite (SHA) and buffer-coated hydroxyapatite (HA) beads. Although the hypotonic buffer used in these assays was adjusted to simulate saliva, it does not necessarily provide the optimal parameters for the quantitative estimate of adhesion under in vitro conditions. Optimization is necessary to provide the maximum sensitivity of the assay for detecting the effects of various salivas as well as for quantitating the effect of environmental growth conditions on the adhesion of S. sanguis to SHA and HA. A major distinction between the adhesion of S. sanguis to SHA and HA was observed when the bacterial concentration was varied. At high cell concentrations, the number of cells adhering to SHA was twice the number adhering to HA. Such differences were not detected at low cell concentrations. The optimal pH for the adsorption to both SHA and HA was 6. Changes in the ionic strength or addition of mono- or divalent cations found in saliva had little effect on adhesion to HA. In contrast, high concentrations of monovalent cations inhibited adhesion to SHA. Anions such as carbonate, chloride, and sulfate did not have specific effects on adhesion, whereas acetate inhibited adhesion to both SHA and HA. Fluoride inhibited adhesion to both SHA and HA, suggesting an interaction between fluoride and hydroxyapatite. These results indicated that 2 mM phosphate buffer at a pH of 6 containing 5 mM KCl and 1 mM CaCl2 was the optimal buffer for studying the in vitro adhesion of S. sanguis to SHA.